
Five-Minute Review
1. What is a method? A static method?
2. What is the motivation for having

methods?
3. What role do methods serve in

expressions?
4. What are the mechanics of method

calling?
5. What are local variables?

1

Programming – Lecture 6

Objects and Classes (Chapter 6)
• Local/instance/class variables, constants
• Using existing classes: RandomGenerator
• The implementor’s perspective
• Javadoc: The client’s perspective
• Defining your own classes

2

Chapter 6—Objects and Classes

The Art and Science of

An Introduction
to Computer ScienceERIC S. ROBERTS

Java

Objects and Classes
C H A P T E R 6

To beautify life is to give it an object.
—José Martí, On Oscar Wilde, 1888

6.1 Using the RandomGenerator class
6.2 The javadoc documentation system
6.3 Defining your own classes
6.4 Representing student information
6.5 Rational numbers
6.6 Extending existing classes

Local/Instance/Class Variables
(See also Lec. 03)

public class Example {
int someInstanceVariable;
static int someClassVariable;
static final double PI = 3.14;

public void run() {
int someLocalVariable;
...

}
}

4

Local Variables
• Declared within method
• One storage location ("box")

per method invocation
• Stored on stack

public void run() {
int someLocalVariable;
...

}

5

Instance Variables
• Declared outside method
• One storage location per object
• A.k.a. ivars, member variables, or fields
• Stored on heap

int someInstanceVariable;

6

Class Variables
• Declared outside method,

with static modifier
• Only one storage location, for all objects
• Stored in static data segment

static int someClassVariable;
static final double PI = 3.14;

7

Constants
• Are typically stored in class variables
• final indicates that these are not

modified

static final double PI = 3.14;

8

this
• this refers to current object
• May use this to override shadowing of

ivars by local vars of same name

• Coding Advice: re-use var. names in
constructors and setters
(even though examples in book don't always do this ...)

public class Point {
public int x = 0, y = 0;

public Point(int x, int y) {
this.x = x;
this.y = y;

}
}

9

Coding Advice – Getters and Setters
• A setter sets the value of an ivar
• Should be named setVarName

public void setX(int x) {
this.x = x;

}

• A getter returns the value of an ivar
• Should be named getVarName, except for boolean

ivars, which should be named isVarName
public int getX() {
return x;

}
10

Coding Advice – Getters and Setters

• To abstract from class implementation, clients of
a class should access object state only through
getters and setters

• Implementers of a class can access state
directly

• Eclipse can automatically generate generic
constructors, getters, setters

• However, should create only those
getters/setters that clients really need

11

Using the RandomGenerator Class
• Before you start to write classes of your own, it helps to look

more closely at how to use classes that have been developed
by others. Chapter 6 illustrates the use of existing classes by
introducing a class called RandomGenerator, which makes
it possible to write programs that simulate random processes
such as flipping a coin or rolling a die. Programs that involve
random processes of this sort are said to be nondeterministic.

• Nondeterminstic behavior is essential to many applications.
Computer games would cease to be fun if they behaved in
exactly the same way each time. Nondeterminism also has
important practical uses in simulations, in computer security,
and in algorithmic research.

Creating a Random Generator
• The first step in writing a program that uses randomness is to

create an instance of the RandomGenerator class.

• In most cases, you create a new instance of a class by using
the new operator, as you have already seen in the earlier
chapters. From that experience, you would expect to create a
RandomGenerator object by writing a declaration like this:

RandomGenerator rgen = new RandomGenerator();

For reasons that will be discussed in a later slide, using new is
not appropriate for RandomGenerator because there should
be only one random generator in an application. What you
want to do instead is to ask the RandomGenerator class for
a common instance that can be shared throughout all classes
in your program.

Creating a Random Generator

• In most cases, you create a new instance of a class by using
the new operator, as you have already seen in the earlier
chapters. From that experience, you would expect to create a
RandomGenerator object by writing a declaration like this:

RandomGenerator rgen = new RandomGenerator();

For reasons that will be discussed in a later slide, using new is
not appropriate for RandomGenerator because there should
be only one random generator in an application. What you
want to do instead is to ask the RandomGenerator class for
a common instance that can be shared throughout all classes
in your program.

private RandomGenerator rgen = RandomGenerator.getInstance();

• The best way to create a RandomGenerator instance is to
call the getInstance method, which returns a single shared
instance of a random generator. The standard form of that
declaration looks like this:

• This declaration usually appears outside of any method and is
therefore an example of an instance variable. The keyword
private indicates that this variable can be used from any
method within this class but is not accessible to other classes.

• When you want to obtain a random value, you send a message
to the generator in rgen, which then responds with the result.

Creating a Random Generator

15

private RandomGenerator rgen =
RandomGenerator.getInstance();

private RandomGenerator rgen =
new RandomGenerator();

RandomGenerator Class

16

int nextInt(int low, int high)
Returns a random int between low and high, inclusive.

int nextInt(int n)
Returns a random int between 0 and n-1.

double nextDouble(double low, double high)
Returns a random double d in the range low ≤ d < high.

double nextDouble()
Returns a random double d in the range 0 ≤ d < 1.

boolean nextBoolean()
Returns a random boolean value, which is true 50 percent of the time.

boolean nextBoolean(double p)
Returns a random boolean, which is true with probability p, where 0 ≤ p ≤ 1.

Color nextColor()
Returns a random color.

Aside: Polymorphism
Definitions vary, but we here distinguish
• Static polymorphism

– Method overloading
• Dynamic polymorphism

– Method overriding
• Parametric polymorphism

– Generics (see later)

https://docs.oracle.com/javase/tutorial/java/IandI/override.html
https://en.wikipedia.org/wiki/Polymorphism_(computer_science)
https://docs.oracle.com/javase/tutorial/java/IandI/override.html
https://www.sitepoint.com/quick-guide-to-polymorphism-in-java/

17

Static Polymorphism

• Method overloading
• Methods of same name but with different

parameters
• Aka static binding

boolean nextBoolean()
boolean nextBoolean(double p)

18

Dynamic Polymorphism
• Method overriding
• Subclass implements method of same signature,

i.e. same name and with same parameters, as in
superclass

• Aka dynamic binding
• For static methods: method hiding

toString()
• is implemented in java.lang.Object
• may be overridden, e.g. to change how object is

printed by println 19

Using the Random Methods
• To use the methods from the previous slide in a program, all

you need to do is call that method using rgen as the receiver.
• As an example, you could simulate rolling a die by calling

int die = rgen.nextInt(1, 6);

• Similarly, you could simulate flipping a coin like this:

String flip =
rgen.nextBoolean() ? "Heads" : "Tails";

• Note that the nextInt, nextDouble, and nextBoolean
methods all exist in more than one form. Java can tell which
version of the method you want by checking the number and
types of the arguments. Methods that have the same name but
differ in their argument structure are said to be overloaded.

Exercises

1. Set the variable total to the sum of
two 6-sided dice.

21

int total = rgen.nextInt(2, 12);

This declaration makes 2 come up as often as 7.

int d1 = rgen.nextInt(1, 6);
int d2 = rgen.nextInt(1, 6);
int total = d1 + d2;

Exercises

2. Flip a weighted coin that comes up
heads 60% of the time.

22

String flip =
rgen.nextBoolean(0.6) ? "Heads" : "Tails";

Exercises

3. Change the fill color of rect to some
randomly generated color.

23

rect.setFillColor(rgen.nextColor());

public void run() {
int total = rollTwoDice();
if (total == 7 || total == 11) {

println("That's a natural. You win.");
} else if (total == 2 || total == 3 || total == 12) {

println("That's craps. You lose.");
} else {

int point = total;
println("Your point is " + point + ".");
while (true) . . .

}
}

Craps

point total

6 6396

while (true) {
total = rollTwoDice();
if (total == point) {

println("You made your point. You win.");
break;

} else if (total == 7) {
println("That's a 7. You lose.");
break;

}
}

d1 d2 total

private int rollTwoDice() {
int d1 = rgen.nextInt(1, 6);
int d2 = rgen.nextInt(1, 6);
int total = d1 + d2;
println("Rolling dice: " + d1 + " + " + d2 + " = " + total);
return total;

}

4 6

Rolling dice: 4 + 2 = 6

2

Your point is 6.
Rolling dice: 2 + 1 = 3
Rolling dice: 3 + 6 = 9
Rolling dice: 3 + 3 = 6
You made your point. You win.

skip simulation

2 31

public void run() {
int total = rollTwoDice();
if (total == 7 || total == 11) {

println("That's a natural. You win.");
} else if (total == 2 || total == 3 || total == 12) {

println("That's craps. You lose.");
} else {

int point = total;
println("Your point is " + point + ".");
while (true) . . .

}
}

point total

6 6

Simulating the Game of Craps

24

Two Perspectives

1. Implementor
“How does this thing work internally?”

2. Client
“How do I use this thing?”

25

Information Hiding ➡ Similar to methods!

Clients and Implementors
• As you work with classes in Java, it is useful to recognize that

there are two contrasting perspectives that you can take with
respect to a particular class. More often than not, you will
find yourself using a class that you didn’t actually write, as in
the case of the RandomGenerator class. In such cases, you
are acting as a client of the class. When you actually write
the code, you are then acting as as an implementor.

• Clients and implementors look at a class in different ways.
Clients need to know what methods are available in a class
and how to call them. The details of how each method works
are of little concern. The implementor, on the other hand, is
primarily interested in precisely those details.

• As was true in the case of a method and its callers, the
implementor of a class should try to hide complexity from its
clients. The RandomGenerator class hides a considerable
amount of complexity, as you will see on the next few slides.

Class Hierarchy

• Clients don’t care where methods are
implemented

• This design is called a
Layered Abstraction

27

Random

RandomGenerator

Layered Abstractions
• The RandomGenerator class is actually implemented as a

subclass of a class called Random, as follows:

Random

RandomGenerator

• Some of the methods that you call to produce random values
are defined in the RandomGenerator class itself; others are
inherited from the Random class. As a client, you don’t need
to know which is which.

• Class hierarchies that define methods at different levels are
called layered abstractions.

Packages

import acm.util.RandomGenerator

Not:
import java.util.Random

29

java.util.Random

acm.util.RandomGenerator

Java Packages
• Every Java class is part of a package, which is a collection of

related classes that have been released as a coherent unit.
• The RandomGenerator class is defined in a package called

acm.util, which is part of the ACM Java Libraries.
• The Random class is part of the java.util package, which

is a collection of general utility classes.
• Whenever you refer directly to a class, you must import the

package in which it lives. For example, any program using
the RandomGenerator class will include the line

import acm.util.*;

When you use the RandomGenerator class, you do not need
to import the java.util package (unless you use it for some
other purpose). The fact that RandomGenerator is built on
top of Random is part of the complexity hidden from clients.

Simulating Randomness

• Computers are not random
➟ Pseudorandom numbers

• Initialized with a seed value
• Explicit seed:

setSeed(long seed)

31

Simulating Randomness
• Nondeterministic behavior turns out to be difficult to achieve

on a computer. A computer executes its instructions in a
precise, predictable way. If you give a computer program the
same inputs, it will generate the same outputs every time,
which is not what you want in a nondeterministic program.

• Given that true nondeterminism is so difficult to achieve in a
computer, classes such as RandomGenerator must instead
simulate randomness by carrying out a deterministic process
that satisfies the following criteria:
1. The values generated by that process should be difficult

for human observers to predict.
2. Those values should appear to be random, in the sense that

they should pass statistical tests for randomness.

• Because the process is not truly random, the values generated
by RandomGenerator are said to be pseudorandom.

Pseudorandom Numbers
• The RandomGenerator class uses a mathematical process to

generate a series of integers that, for all intents and purposes,
appear to be random. The code that implements this process
is called a pseudorandom number generator.

• To obtain a new pseudorandom number, you send a message
to the generator asking for the next number in its sequence.

• The best way to visualize a pseudorandom number generator
is to think of it as a black box that generates a sequence of
values, even though the details of how it does so are hidden:

pseudorandom number
generator

Give me the next pseudorandom number

• The generator then responds by returning that value.
• Repeating these steps generates a new value each time.

1749940626892128508155629808

The Random Number Seed
• The pseudorandom number generator used by the Random

and RandomGenerator classes generates seemingly random
values by applying a function to the previous result. The
starting point for this sequence of values is called the seed.

• As part of the process of starting a program, Java initializes
the seed for its pseudorandom number generator to a value
based on the system clock, which changes very quickly on a
human time scale. Programs run just a few milliseconds apart
will therefore get a different sequence of random values.

• Computers, however, run much faster than the internal clock
can register. If you create two RandomGenerator instances
in a single program, it is likely that both will be initialized
with the same seed and therefore generate the same sequence
of values. This fact explains why it is important to create
only one RandomGenerator instance in an application.

Debugging and Random Behavior
• Even though unpredictable behavior is essential for programs

like computer games, such unpredictability often makes
debugging extremely difficult. Because the program runs in a
different way each time, there is no way to ensure that a bug
that turns up the first time you run a program will happen
again the second time around.

• To get around this problem, it is often useful to have your
programs run deterministically during the debugging phase.
To do so, you can use the setSeed method like this:

rgen.setSeed(1);

This call sets the random number seed so that the internal
random number sequence will always begin at the same point.
The value 1 is arbitrary. Changing this value will change the
sequence, but the sequence will still be the same on each run.

Two Perspectives

1. Implementor
“How does this thing work internally?”

2. Client
“How do I use this thing?”

36

Information Hiding ➡ Similar to methods!

The javadoc Documentation System
• Unlike earlier languages that appeared before the invention of

the World-Wide Web, Java was designed to operate in the
web-based environment. From Chapter 1, you know that Java
programs run on the web as applets, but the extent of Java’s
integration with the web does not end there.

• One of the most important ways in which Java works together
with the web is in the design of its documentation system,
which is called javadoc. The javadoc application reads Java
source files and generates documentation for each class.

• The next few slides show increasingly detailed views of the
javadoc documentation for the RandomGenerator class.

• You can see the complete documentation for the ACM Java
Libraries by clicking on the following link:

http://jtf.acm.org/javadoc/student/

Sample javadoc Pages
StudentOverview Package Complete Tree Index Help

PREV CLASS NEXT CLASS FRAMES NO FRAMES
DETAIL: FIELD | CONSTR | METHODSUMMARY: FIELD | CONSTR | METHOD

acm.util

Class RandomGenerator
java.lang.Object
|
+--java.util.Random

|
+--acm.util.RandomGenerator

public class RandomGenerator extends Random

This class implements a simple random number generator that allows clients to generate pseudorandom integers, doubles, booleans,
and colors. To use it, the first step is to declare an instance variable to hold the random generator as follows:

private RandomGenerator rgen = RandomGenerator.getInstance();

By default, the RandomGenerator object is initialized to begin at an unpredictable point in a pseudorandom sequence. During
debugging, it is often useful to set the internal seed for the random generator explicitly so that it always returns the same sequence.
To do so, you need to invoke the setSeed method.

The RandomGenerator object returned by getInstance is shared across all classes in an application. Using this shared instance of
the generator is preferable to allocating new instances of RandomGenerator. If you create several random generators in succession,
they will typically generate the same sequence of values.

Sample javadoc Pages
Constructor Summary

Method Summary
RandomGenerator getInstance()

Returns a RandomGenerator instance that can be shared among several classes.
boolean nextBoolean(double p)

Returns a random boolean value with the specified probability.
Color nextColor()

Returns a random opaque color whose components are chosen uniformly in the 0-255 range.
double nextDouble(double low, double high)

Returns the next random real number in the specified range.
int nextInt(int low, int high)

Returns the next random integer in the specified range.

Inherited Method Summary
boolean nextBoolean()

Returns a random boolean that is true 50 percent of the time.
double nextDouble()

Returns a random double d in the range 0 ≤ d < 1.
int nextInt(int n)

Returns a random int k in the range 0 ≤ k < n.
void setSeed(long seed)

Sets a new starting point for the random number generator.

RandomGenerator()
Creates a new random generator.

Sample javadoc Pages
Constructor Detail

Method Detail

public RandomGenerator()
Creates a new random generator. Most clients will not use the constructor directly but will instead call getInstance to
obtain a RandomGenerator object that is shared by all classes in the application.

Usage: RandomGenerator rgen = new RandomGenerator();

public RandomGenerator()
Returns a RandomGenerator instance that can be shared among several classes.

Usage: RandomGenerator rgen = RandomGenerator.getInstance();

public boolean nextBoolean(double p)
Returns a random boolean value with the specified probability. You can use this method to simulate an event that occurs
with a particular probability. For example, you could simulate the result of tossing a coin like this:

String coinFlip = rgen.nextBoolean(0.5) ? "HEADS" : "TAILS";

Usage: if (rgen.nextBoolean(p)) ...

Returns: A shared RandomGenerator object

Returns: The value true with probability p
Parameter: p A value between 0 (impossible) and 1 (certain) indicating the probability

Writing javadoc Comments
• The javadoc system is designed to create the documentary

web pages automatically from the Java source code. To make
this work with your own programs, you need to add specially
formatted comments to your code.

• A javadoc comment begins with the characters /** and
extends up to the closing */ just as a regular comment does.
Although the compiler ignores these comments, the javadoc
application reads through them to find the information it
needs to create the documentation.

• Although javadoc comments may consist of simple text, they
may also contain formatting information written in HTML,
the hypertext markup language used to create web pages. The
javadoc comments also often contain @param and @result
tags to describe parameters and results, as illustrated on the
next slide.

/**
* Returns the next random integer between 0 and
* {@code n}–1, inclusive.
*
* @param n The number of integers in the range
* @return A random integer between 0 and {@code n}-1
*/

public int nextInt(int n)

public int nextInt(int n)
Returns the next random integer between 0 and n-1, inclusive.
Parameter: n The number of integers in the range
Returns: A random integer between 0 and n-1

Writing Javadoc Comments

Note: Eclipse can automatically generate Javadoc
templates ("Generate Element Comment").
These must of course still be filled with content!

Aside: What is null?

• Variables with primitive type have to
have a value before being used.
char, byte, short, int,
long, float, double, boolean

• Variables with object type don’t.
Wubbel myWubbel = new Wubbel();
Wubbel noWubbel = null;

43

if (noWubbel != null) …

Defining Classes

Class body has following types of entries:
• Class var's, constants
• Instance variables

Object state
44

public class name [extends superclass] {

class body

}

• Constructors
• Methods

Defining Your Own Classes
• The standard form of a class definition in Java looks like this:

public class name extends superclass {

class body

}

• The extends clause on the header line specifies the name of
the superclass. If the extends clause is missing, the new
class becomes a direct subclass of Object, which is the root
of Java’s class hierarchy.

• The body of a class consists of a collection of Java definitions
that are generically called entries. The most common entries
are constructors, methods, instance variables, and named
constants.

Access Control/Visibility for Entries

46

public int nextInt();

public

access modifier

private

protected

(no keyword) Visible in same package only, not in
subclasses. (“package-private”)

Visible in same package and subclasses
and subclasses thereof, etc.

Visible in same class only.

Visible to everyone. (“exported”)

Coding advice: make visibilities as restrictive as possible,
preferably private

47

https://docs.oracle.com/javase/tutorial/java/javaOO/accesscontrol.html

Modifier Class Package Subclass World
public Y Y Y Y
protected Y Y Y N
(default) Y Y N N
private Y N N N

public int publicIvar;
protected int protectedIvar;
int packagePrivateIvar;
private int privateIvar;

Controlling Access to Entries
• Each entry in a Java class is marked with one of the following

keywords to control which classes have access to that entry:

private

protected

(no keyword)

public
All classes in the program have access to any
public entry. The public entries in a class are
said to be exported by that class.

If the access keyword is missing, the entry is
visible only to classes in the same package.
Such entries are called package-private.

Access to entries declared as private is limited
to the class itself, making that entry completely
invisible outside the class.
Protected entries are restricted to the class that
defines them, along with any of its subclasses
or any classes in the same package.

• The text uses only public and private. All entries are
marked as private unless there is a compelling reason to
export them.

Example: Student Class

Encapsulate these properties:
• ID
• Name
• Credit points
• Paid tuition fee?

49

Representing Student Information
• Understanding the structure of a class is easiest in the context

of a specific example. The next four slides walk through the
definition of a class called Student, which is used to keep
track of the following information about a student:
– The name of the student
– The student’s six-digit identification number
– The number of credits the student has earned (which may include a

decimal fraction to account for half- and quarter-credit courses)
– A flag indicating whether the student has paid all university fees

• Each of these values is stored in an instance variable of the
appropriate type.

• In keeping with the modern object-oriented convention used
throughout both the book and the ACM Java Libraries, these
instance variables are declared as private. All access to
these values is therefore mediated by methods exported by the
Student class.

/**
* The Student class keeps track of the following pieces of data
* about a student: the student's name, ID number, the number of
* credits the student has earned toward graduation, and whether
* the student is paid up with respect to university bills.
* All of this information is entirely private to the class.
* Clients can obtain this information only by using the various
* methods defined by the class.
*/

public class Student {

/**
* Creates a new Student object with the specified name and ID.
* @param name The student's name as a String
* @param id The student's ID number as an int
*/

public Student(String name, int id) {
studentName = name;
studentID = id;

}

The Student Class
This comment describes the class as a whole.

The class header defines Student as a direct subclass of Object.

This comment describes the constructor.

The constructor sets the instance variables.

skip codepage 1 of 4

/**
* The Student class keeps track of the following pieces of data
* about a student: the student's name, ID number, the number of
* credits the student has earned toward graduation, and whether
* the student is paid up with respect to university bills.
* All of this information is entirely private to the class.
* Clients can obtain this information only by using the various
* methods defined by the class.
*/

public class Student {

/**
* Creates a new Student object with the specified name and ID.
* @param name The student's name as a String
* @param id The student's ID number as an int
*/

public Student(String name, int id) {
studentName = name;
studentID = id;

}

/**
* Gets the name of this student.
* @return The name of this student
*/

public String getName() {
return studentName;

}

/**
* Gets the ID number of this student.
* @return The ID number of this student
*/

public int getID() {
return studentID;

}

/**
* Sets the number of credits earned.
* @param credits The new number of credits earned
*/

public void setCredits(double credits) {
creditsEarned = credits;

}

The Student Class

These methods retrieve the value of
an instance variable and are called
getters. Because the student name
and ID number are fixed, there are
no corresponding setters.

This method changes the value of
an instance variable and is called a
setter.

skip codepage 2 of 4

/**
* Gets the name of this student.
* @return The name of this student
*/

public String getName() {
return studentName;

}

/**
* Gets the ID number of this student.
* @return The ID number of this student
*/

public int getID() {
return studentID;

}

/**
* Sets the number of credits earned.
* @param credits The new number of credits earned
*/

public void setCredits(double credits) {
creditsEarned = credits;

}

/**
* Gets the number of credits earned.
* @return The number of credits this student has earned
*/

public double getCredits() {
return creditsEarned;

}

/**
* Sets whether the student is paid up.
* @param flag The value true or false indicating paid-up status
*/

public void setPaidUp(boolean flag) {
paidUp = flag;

}

/**
* Returns whether the student is paid up.
* @return Whether the student is paid up
*/

public boolean isPaidUp() {
return paidUp;

}

The Student Class

Names for getter methods usually
begin with the prefix get. The only
exception is for getter methods that
return a boolean, in which case
the name typically begins with is.

skip codepage 3 of 4

/**
* Gets the number of credits earned.
* @return The number of credits this student has earned
*/

public double getCredits() {
return creditsEarned;

}

/**
* Sets whether the student is paid up.
* @param flag The value true or false indicating paid-up status
*/

public void setPaidUp(boolean flag) {
paidUp = flag;

}

/**
* Returns whether the student is paid up.
* @return Whether the student is paid up
*/

public boolean isPaidUp() {
return paidUp;

}

/**
* Creates a string identifying this student.
* @return The string used to display this student
*/

public String toString() {
return studentName + " (#" + studentID + ")";

}

/* Public constants */

/** The number of credits required for graduation */
public static final double CREDITS_TO_GRADUATE = 32.0;

/* Private instance variables */
private String studentName; /* The student's name */
private int studentID; /* The student's ID number */
private double creditsEarned; /* The number of credits earned */
private boolean paidUp; /* Whether student is paid up */

}

The Student Class
The toString method
tells Java how to display
a value of this class. All
of your classes should
override toString.

Classes often export named constants.

These declarations define the instance
variables that maintain the internal
state of the class. All instance variables
used in the text are private.

skip codepage 4 of 4

Using the Student Class
• Once you have defined the Student class, you can then use

its constructor to create instances of that class. For example,
you could use the following code to create two Student
objects:

Student chosenOne = new Student("Harry Potter", 123456);
Student topStudent = new Student("Hermione Granger", 314159);

• You can then use the standard receiver syntax to call methods
on these objects. For example, you could set Hermione’s
number-of-credits field to 97 by writing

or get Harry’s full name by calling

topStudent.setCredits(97);

chosenOne.getName();

A Class Design Strategy

1. Which instance variables do I need?
2. Which of them can be changed?
3. Which constructors make sense?
4. Which methods do I need?

56

Example: Employee class
Download this presentation to see the
next few slides, not shown in class

Exercise: Design an Employee Class
• Create a definition for a class called Employee, which keeps

track of the following information:
– The name of the employee
– A number indicating the order in which this employee was hired
– A flag indicating whether the employee is still active
– The salary (a number that may contain a decimal fraction)

• The name and employee number should be assigned as part of
the constructor call, and it should not be possible to change
them subsequently. By default, new employees should be
marked as active. The salary field need not be initialized.

• The class should export appropriately named getters for all
four fields and setters for the last two.

/**
* The Employee class keeps track of the following pieces of
* data about an employee: the name, employee number, whether
* the employee is active, and the annual salary.
*/

public class Employee {

/**
* Creates a new Employee object with the specified name and
* employee number.
* @param name The employee's name as a String
* @param id The employee number as an int
*/

public Employee(String name, int id) {
employeeName = name;
employeeNumber = id;
active = true;

}

The Employee Class

skip codepage 1 of 4

/**
* The Employee class keeps track of the following pieces of
* data about an employee: the name, employee number, whether
* the employee is active, and the annual salary.
*/

public class Employee {

/**
* Creates a new Employee object with the specified name and
* employee number.
* @param name The employee's name as a String
* @param id The employee number as an int
*/

public Employee(String name, int id) {
employeeName = name;
employeeNumber = id;
active = true;

}

/**
* Gets the name of this employee.
* @return The name of this employee
*/

public String getName() {
return employeeName;

}

/**
* Gets the employee number of this employee.
* @return The employee number of this employee
*/

public int getEmployeeNumber() {
return employeeNumber;

}

/**
* Sets whether the employee is active.
* @param flag The value true or false indicating active status
*/

public void setActive(boolean flag) {
active = flag;

}

The Employee Class

skip codepage 2 of 4

/**
* Gets the name of this employee.
* @return The name of this employee
*/

public String getName() {
return employeeName;

}

/**
* Gets the employee number of this employee.
* @return The employee number of this employee
*/

public int getEmployeeNumber() {
return employeeNumber;

}

/**
* Sets whether the employee is active.
* @param flag The value true or false indicating active status
*/

public void setActive(boolean flag) {
active = flag;

}

/**
* Returns whether the employee is active.
* @return Whether the employee is active
*/

public boolean isActive() {
return active;

}

/**
* Sets the employee's salary.
* @param salary The new salary
*/

public void setSalary(double salary) {
annualSalary = salary;

}

/**
* Gets the annual salary for this employee.
* @return The annual salary for this employee works
*/

public double getSalary() {
return annualSalary;

}

The Employee Class

skip codepage 3 of 4

/**
* Returns whether the employee is active.
* @return Whether the employee is active
*/

public boolean isActive() {
return active;

}

/**
* Sets the employee's salary.
* @param salary The new salary
*/

public void setSalary(double salary) {
annualSalary = salary;

}

/**
* Gets the annual salary for this employee.
* @return The annual salary for this employee works
*/

public double getSalary() {
return annualSalary;

}

/**
* Creates a string identifying this employee.
* @return The string used to display this employee
*/

public String toString() {
return employeeName + " (#" + employeeNumber + ")";

}

/* Private instance variables */
private String employeeName; /* The employee's name */
private int employeeNumber; /* The employee number */
private boolean active; /* Whether the employee is active */
private double annualSalary; /* The annual salary */

}

The Employee Class

skip codepage 4 of 4

Exercises

1. Mark Jacob Marley as inactive.

62

Employee founder = new
Employee("Ebenezer Scrooge", 1);

Employee partner = new
Employee("Jacob Marley", 2);

Employee clerk = new
Employee("Bob Cratchit", 3);

partner.setActive(false);

2. Double Bob Cratchit’s salary.
clerk.setSalary(2 * clerk.getSalary());

Exercise: Using the Employee Class
• Now that you have defined Employee, write declarations for

three variables that contain the names of the following three
employees: Ebenezer Scrooge (employee #1), Jacob Marley
(employee #2), and Bob Cratchit (employee #3).

Employee founder = new Employee("Ebenezer Scrooge", 1);
Employee partner = new Employee("Jacob Marley", 2);
Employee clerk = new Employee("Bob Cratchit", 3);

• Using these variables, write a Java statement that marks the
Employee instance for Jacob Marley as inactive.

partner.setActive(false);

• Write a Java statement that doubles Bob Cratchit’s salary.
clerk.setSalary(2 * clerk.getSalary());

Example: Rational Class
Encapsulate these properties:
• Numerator
• Denominator
Provides these operations:

Note: can view this as specification of an ADT 64

a
b + c

d = ad + bc
bd

a
b – c

d = ad – bc
bd

a
b x c

d = ac

a
b

c
d =..

bd

ad
bc

Addition:

Subtraction:

Multiplication:

Division:

A Rationale for Rational

65

1
2

1
3

1
6

+ + = 1Math:

Java:

Even worse:

1.0/2.0 + 1.0/3.0 + 1.0/6.0 = 0.999999999999999

0.1 + 0.1 + 0.1 = 0.30000000000000004

Wait a minute ...

66

public class RationaleForRational extends ConsoleProgram
{
public void run() {
double oneHalf = 1.0 / 2.0;
double oneThird = 1.0 / 3.0;
double oneSixth = 1.0 / 6.0;
double oneTenth = 1.0 / 10.0;

double threeThirds = oneThird + oneThird + oneThird;
println("threeThirds = " + threeThirds);

// Output: "threeThirds = 1.0"
double sixSixths = oneHalf + oneThird + oneSixth;
println("sixSixths = " + sixSixths);

// Output: "sixSixths = 0.9999999999999999"
double threeTenths = oneTenth + oneTenth + oneTenth;
println("threeTenths = " + threeTenths);

// Output: "threeTenths = 0.30000000000000004"
}

}

IEEE 754 Floating Point
Numerical Form: –1s M 2E

• Sign bit s
• Significand M normally fractional value in [1.0,2.0)
• Exponent E weighs value by power of two

Encoding

• s is sign bit
• exp field encodes E
• frac field encodes M

For much more detail, see https://en.wikipedia.org/wiki/IEEE_754
67

s exp frac

1.0000 0000 000016 / A16 =
0.1999 9999 999916

.
68

binary point

69

Computers (usually) cannot represent
repeating decimals (such as 0.310)

Computers (usually) cannot represent
repeating binaries either (such as 0.12)

Some non-repeating decimals (such as 0.110)
correspond to repeating binaries (0.000112);
thus computers cannot (easily) represent 0.1!

How about the converse? (Exercise)

_

_

Coding Advice – Floating Point

70

double x = 0, max = 5, step = 0.1;
do {

x = x + step;
println("Applied " + x + " x-ray units.");

} while (x != max);

WARNING: this would never terminate!

Use instead: while (x <= max)

In general, avoid (in-)equality checks with floating point,
use <= or >= instead!

Implementing the Rational Class
• The next five slides show the code for the Rational class

along with some brief annotations.

• As you read through the code, the following features are
worth special attention:
– The constructors for the class are overloaded. Calling the constructor

with no argument creates a Rational initialized to 0, calling it with
one argument creates a Rational equal to that integer, and calling it
with two arguments creates a fraction.

– The constructor makes sure that the numerator and denominator of any
Rational are always reduced to lowest terms. Moreover, since these
values never change once a new Rational is created, this property
will remain in force.

– The add, subtract, multiply, and divide methods are written so
that one of the operands is the receiver (signified by the keyword
this) and the other is passed as an argument. Thus to add r1 and r2
you would write:

r1.add(r2)

/**
* The Rational class is used to represent rational numbers, which
* are defined to be the quotient of two integers.
*/

public class Rational {

/** Creates a new Rational initialized to zero. */
public Rational() {

this(0);
}

/**
* Creates a new Rational from the integer argument.
* @param n The initial value
*/

public Rational(int n) {
this(n, 1);

}

The Rational Class

These constructors are overloaded so that there is more than one way to create a Rational
value. These two versions invoke the primary constructor by using the keyword this.

skip codepage 1 of 5

/**
* The Rational class is used to represent rational numbers, which
* are defined to be the quotient of two integers.
*/

public class Rational {

/** Creates a new Rational initialized to zero. */
public Rational() {

this(0);
}

/**
* Creates a new Rational from the integer argument.
* @param n The initial value
*/

public Rational(int n) {
this(n, 1);

}

/**
* Creates a new Rational with the value x / y.
* @param x The numerator of the rational number
* @param y The denominator of the rational number
*/

public Rational(int x, int y) {
int g = gcd(Math.abs(x), Math.abs(y));
num = x / g;
den = Math.abs(y) / g;
if (y < 0) num = -num;

}

/**
* Adds the rational number r to this one and returns the sum.
* @param r The rational number to be added
* @return The sum of the current number and r
*/

public Rational add(Rational r) {
return new Rational(this.num * r.den + r.num * this.den,

this.den * r.den);
}

The Rational Class
The primary constructor
creates a new Rational
from the numerator and
denominator. The call
to gcd ensures that the
fraction is reduced to
lowest terms.

The add method creates
a new Rational object
using the addition rule.
The two rational values
appear in this and r.

skip codepage 2 of 5

/**
* Creates a new Rational with the value x / y.
* @param x The numerator of the rational number
* @param y The denominator of the rational number
*/

public Rational(int x, int y) {
int g = gcd(Math.abs(x), Math.abs(y));
num = x / g;
den = Math.abs(y) / g;
if (y < 0) num = -num;

}

/**
* Adds the rational number r to this one and returns the sum.
* @param r The rational number to be added
* @return The sum of the current number and r
*/

public Rational add(Rational r) {
return new Rational(this.num * r.den + r.num * this.den,

this.den * r.den);
}

/**
* Subtracts the rational number r from this one.
* @param r The rational number to be subtracted
* @return The result of subtracting r from the current number
*/

public Rational subtract(Rational r) {
return new Rational(this.num * r.den - r.num * this.den,

this.den * r.den);
}

/**
* Multiplies this number by the rational number r.
* @param r The rational number used as a multiplier
* @return The result of multiplying the current number by r
*/

public Rational multiply(Rational r) {
return new Rational(this.num * r.num, this.den * r.den);

}

The Rational Class

These methods (along with divide on the next page) work just like the add method but use
a different formula. Note that these methods do have access to the components of r.

skip codepage 3 of 5

/**
* Subtracts the rational number r from this one.
* @param r The rational number to be subtracted
* @return The result of subtracting r from the current number
*/

public Rational subtract(Rational r) {
return new Rational(this.num * r.den - r.num * this.den,

this.den * r.den);
}

/**
* Multiplies this number by the rational number r.
* @param r The rational number used as a multiplier
* @return The result of multiplying the current number by r
*/

public Rational multiply(Rational r) {
return new Rational(this.num * r.num, this.den * r.den);

}

/**
* Divides this number by the rational number r.
* @param r The rational number used as a divisor
* @return The result of dividing the current number by r
*/

public Rational divide(Rational r) {
return new Rational(this.num * r.den, this.den * r.num);

}

/**
* Creates a string representation of this rational number.
* @return The string representation of this rational number
*/

public String toString() {
if (den == 1) {

return "" + num;
} else {

return num + "/" + den;
}

}

The Rational Class

This method converts the
Rational number to its string
form. If the denominator is 1, the
number is displayed as an integer.

skip codepage 4 of 5

/**
* Divides this number by the rational number r.
* @param r The rational number used as a divisor
* @return The result of dividing the current number by r
*/

public Rational divide(Rational r) {
return new Rational(this.num * r.den, this.den * r.num);

}

/**
* Creates a string representation of this rational number.
* @return The string representation of this rational number
*/

public String toString() {
if (den == 1) {

return "" + num;
} else {

return num + "/" + den;
}

}

/**
* Calculates the greatest common divisor using Euclid's algorithm.
* @param x First integer
* @param y Second integer
* @return The greatest common divisor of x and y
*/

private int gcd(int x, int y) {
int r = x % y;
while (r != 0) {

x = y;
y = r;
r = x % y;

}
return y;

}

/* Private instance variables */
private int num; /* The numerator of this Rational */
private int den; /* The denominator of this Rational */

}

The Rational Class

Euclid’s gcd method is declared to
be private because it is part of the
implementation of this class and is
never used outside of it.

As always, the instance variables are private to this class.

skip codepage 5 of 5

Simulating Rational Calculation
• The next slide works through all the steps in the calculation of

a simple program that adds three rational numbers.

1
2

1
3

1
6

+ +

• With rational arithmetic, the computation is exact. If you
write this same program using variables of type double, the
result looks like this:

RoundoffExample

1.0/2.0 + 1.0/3.0 + 1.0/6.0 = 0.999999999999999

• The simulation treats the Rational values as abstract objects.
Chapter 7 reprises the example showing the memory structure.

Adding Three Rational Values

c sumba

public void run() {
Rational a = new Rational(1, 2);
Rational b = new Rational(1, 3);
Rational c = new Rational(1, 6);
Rational sum = a.add(b).add(c);
println(a + " + " + b + " + " + c + " = " + sum);

}

TestRational

5
6

1
2

1
3

1
6

1
1

temporary
result

1/2 + 1/3 + 1/6 = 1

skip simulation

public Rational(int x, int y) {
int g = gcd(Math.abs(x), Math.abs(y));
num = x / g;
den = Math.abs(y) / g;
if (y < 0) num = -num;

}

y gx
this
num

den 1 2 1
1
2

public Rational(int x, int y) {
int g = gcd(Math.abs(x), Math.abs(y));
num = x / g;
den = Math.abs(y) / g;
if (y < 0) num = -num;

}

y gx
this
num

den 1 3 1
1
3

public Rational(int x, int y) {
int g = gcd(Math.abs(x), Math.abs(y));
num = x / g;
den = Math.abs(y) / g;
if (y < 0) num = -num;

}

y gx
this
num

den 1 6 1
1
6

public Rational add(Rational r) {

return new Rational(this.num * r.den + r.num * this.den ,
this.den * r.den);

}

this
num

den
1
2

r
num

den
1
3

6

5

public Rational(int x, int y) {
int g = gcd(Math.abs(x), Math.abs(y));
num = x / g;
den = Math.abs(y) / g;
if (y < 0) num = -num;

}

y gx
this
num

den 5 6 1
5
6

public Rational add(Rational r) {

return new Rational(this.num * r.den + r.num * this.den ,
this.den * r.den);

}

this
num

den
5
6

r
num

den
1
6

36

36

public Rational(int x, int y) {
int g = gcd(Math.abs(x), Math.abs(y));
num = x / g;
den = Math.abs(y) / g;
if (y < 0) num = -num;

}

y gx
this
num

den 36 36 36
1
1

Immutable Classes

Rational is immutable
• No method can change internal state
• No setters
• Instance variables are private

Another immutable class: String
Not immutable classes are mutable

79

Extending Classes

FilledRect is filled by default
User can supply a fill color to the constructor

80

GRect

FilledRect

Constructors Calling ...
super(...) invokes constructor of
superclass
this(...) invokes constructor of this class
If none of these calls are made, constructors
implicitly call super()
Default constructor:
• is provided automatically if no other

constructor is provided
• does nothing, except call super()

81

Extending Existing Classes
• The examples shown in the earlier slides have all extended

the built-in Object class. More often than not, however, you
will find that you want to extend an existing class to create a
new class that inherits most of its behavior from its superclass
but makes some small extensions or changes.

• Suppose, for example, that you wanted to define a new class
called FilledRect that is similar to the GRect class, except
that it is filled rather than outlined by default. Moreover, as a
convenience, you would like to be able to specify an optional
color for the rectangle as part of the constructor. Calling

add(new FilledRect(10, 10, 100, 75, Color.RED));

for example, should create a 100x75 rectangle solidly filled in
red and then add it to the canvas at the point (10,10).

• The code for the FilledRect class appears on the next slide.

FilledRect
/**
* This class is a GObject subclass that is almost identical
* to GRect except that it starts out filled instead of outlined.
*/

public class FilledRect extends GRect {

/** Creates a new FilledRect with the specified bounds. */
public FilledRect(double x, double y,

double width, double height) {
super(x, y, width, height);
setFilled(true);

}

/** Creates a new FilledRect with the specified bounds and color. */
public FilledRect(double x, double y,

double width, double height, Color color) {
this(x, y, width, height);
setColor(color);

}

}

This syntax calls the superclass constructor.

This syntax calls another constructor in this class.

Rules for Inherited Constructors
• Whenever you create an object of an extended class, Java

must call some constructor for the superclass object to ensure
that its structure is correctly initialized.

• If the superclass does not define any explicit constructors,
Java automatically provides a default constructor with an
empty body.

• Java therefore invokes the superclass constructor in one of the
following ways:
– Classes that begin with an explicit call to this invoke one of the other

constructors for this class, delegating responsibility to that constructor
for making sure that the superclass constructor gets called.

– Classes that begin with a call to super invoke the constructor in the
superclass that matches the argument list provided.

– Classes that begin with no call to either super or this invoke the
default superclass constructor with no arguments.

Rules for Inherited Methods
• When one class extends another, the subclass is allowed to
override method definitions in its superclass. Whenever you
invoke that method on an instance of the extended class, Java
chooses the new version of the method provided by that class
and not the original version provided by the superclass.

• The decision about which version of a method to use is
always made on the basis of what the object in fact is and not
on what it happens to be declared as at that point in the code.

• If you need to invoke the original version of a method, you
can do so by using the keyword super as a receiver. For
example, if you needed to call the original version of an init
method as specified by the superclass, you could call

super.init();

Summary
• Two perspectives on classes

– Implementor
– Client

• Javadoc produces documentation
• Classes consist of entries
• Classes can be mutable or immutable
• Entries can be public, private, protected,

and package-private
• Constructors of extended classes always call a

superclass constructor (explicitly or implicitly)

86

