Outline

- Classification basics
- Decision tree classifiers
- Overfitting
- Lazy vs Eager Learners
- k-Nearest Neighbors (or learning from your neighbors)
- Evaluation of classifiers

Lazy learners/ Instance-based learners: k-Nearest Neighbor classifiers

- Nearest-neighbor classifiers compare a given unknown instance with training tuples that are similar to it
 - Basic idea: If it walks like a duck, quacks like a duck, then it's probably a duck

k-Nearest Neighbor classifiers

Input:

- A training set D (with known class labels)
- A distance metric to compute the distance between two instances
- The number of neighbors k

Method: Given a new unknown instance X

- Compute distance to other training records
- Identify k nearest neighbors
- Use class labels of nearest neighbors to determine the class label of unknown record (e.g., by taking majority vote)

It requires O(|D|) for each new instance

kNN algorithm

Pseudocode:

```
Input:
                    //training data
  K
                    //Number of neighbors
                    //Input tuple to classify
Output:
                    //Class to which t is assigned
KNN algorithm: //Algorithm to classify tuple using KNN
begin
  N = \emptyset;
  //Find set of neighbors, N, for t
  for each d \in T do
          if |N| ≤ K
         then N = N \cup \{d\};
          else if \exists u \in N such that
                    sim(t,u) \le sim(t,d) \text{ AND } sim(t,u) \le sim(t,u') \forall u' \in N
          then N = N - \{u\}; N = N \cup \{d\};
  //Find class for classification
  c = class to which the most u ∈ N are classified
end
```

Definition of k nearest neighbors

- too small k: high sensitivity to outliers
- too large k: many objects from other classes in the resulting neighborhood
- average k: highest classification accuracy, usually 1 << k < 10</p>

x: unknown instance

Nearest neighbor classification

- "Closeness" is defined in terms of a distance metric
 - e.g. Euclidean distance

$$d(p,q) = \sqrt{\sum_{i} (p_i - q_i)^2}$$

- The k-nearest neighbors are selected among the training set
- The class of the unknown instance X is determined from the neighbor list
 - □ If k=1, the class is that of the closest instance
 - Majority voting: take the majority vote of class labels among the neighbors
 - Each neighbor has the same impact on the classification
 - The algorithm is sensitive to the choice of k
 - Weighted voting: Weigh the vote of each neighbor according to its distance from the unknown instance
 - weight factor, $w = 1/d^2$

Nearest neighbor classification: example

Name	Gender	Height	Output1	
Kristina	F	1.6m	Short	1
Jim	M	2m	Tall	
Maggie	F	1.9m	Medium	
Martha	F	1.88m	Medium	
Stephanie	F	1.7m	Short	3
Bob	M	1.85m	Medium	
Kathy	F	1.6m	Short	2
Dave	M	1.7m	Short	4
Worth	M	2.2m	Tall	
Steven	M	2.1m	Tall	
Debbie	F	1.8m	Medium	
Todd	M	1.95m	Medium	
Kim	F	1.9m	Medium	
Amy	F	1.8m	Medium	
Wynette	F	1.75m	Medium	5
Pat	F	1.6m	?	Short

Nearest neighbor classification issues I

- Different attributes have different ranges
 - e.g., height in [1.5m-1.8m]; income in [\$10K -\$1M]
 - Distance measures might be dominated by one of the attributes
 - Solution: normalization
- k-NN classifiers are lazy learners
 - No model is built explicitly, like in eager learners such as decision trees
 - Classifying unknown records is relatively expensive
 - Possible solutions:
 - Use index structures to speed up the nearest neighbors computation
 - Partial distance computation based on a subset of attributes

Nearest neighbor classification issues II

- The "curse of dimensionality"
 - Ratio of $(D_{\max_d} D_{\min_d})$ to D_{\min_d} converges to zero with increasing dimensionality d
 - D_{min d}: distance to the nearest neighbor in the d-dimensional space
 - D_{max d}: distance to the farthest neighbor in the d-dimensional space
 - This implies that:
 - all points tend to be almost equidistant from each other in high dimensional spaces
 - the distances between points cannot be used to differentiate between them
 - Possible solutions:
 - Dimensionality reduction (e.g., PCA)
 - Work with a subset of dimensions instead of the complete feature space

k-NN classifiers: overview

- (+-) Lazy learners: Do not require model building, but testing is more expensive
- (-) Classification is based on local information in contrast to e.g. DTs that try to find a global model that fits the entire input space: Susceptible to noise
- (+) Incremental classifiers
- (-) The choice of distance function and k is important
- (+) Nearest-neighbor classifiers can produce arbitrarily shaped decision boundaries, in contrary to e.g. decision trees that result in axis parallel hyper rectangles

Outline

- Classification basics
- Decision tree classifiers
- Overfitting
- Lazy vs Eager Learners
- k-Nearest Neighbors (or learning from your neighbors)
- Evaluation of classifiers