Outline

- Introduction
- Basic concepts
- Frequent Itemsets Mining (FIM) Apriori
- Association Rules Mining

Association Rules Mining

- (Recall the) 2-step method to extract the association rules:
 - □ Determine the frequent itemsets w.r.t. min support s ← FIM problem (Apriori)
 - Generate the association rules w.r.t. min confidence c.
- Regarding step 2, the following method is followed:
 - For every frequent itemset X
 - of for every subset Y of X: $Y \neq \emptyset$, $Y \neq X$, the rule $Y \rightarrow (X Y)$ is formed
 - Remove rules that violate min confidence c

$$confidence(Y \rightarrow (X - Y)) = \frac{|support_count(X)|}{support_count(Y)}$$

- Store the frequent itemsets and their supports in a hash table
 - no database access!

Let *X*={1,2,3} be frequent There are 6 candidate rules that can be generated from *X*:

- {1,2}→3
- {1,3}→2
- {2,3}→1
- {1}→{2,3}
- {2}→{1,3}
- {3}→{1,2}

To identify strong rules, we can use the support counts (already computed during the FIM step)

Pseudocode

```
Input:
        //Database of transactions
    I //Items
   L //Large itemsets (= set of Frequent Itemsets)
s //Support (= minSupport)
       //Confidence (= minConfidence)
Output:
           //Association Rules satisfying s and \alpha
    R
ARGen Algorithm:
    R = \emptyset;
    for each l \in L do
        for each x \subset l such that x \neq \emptyset and x \neq l do
           if \frac{support(l)}{support(x)} \ge \alpha then
               R = R \cup \{x \Rightarrow (l-x)\};
```

Confidence-based pruning

- How to efficiently generate rules from frequent itemsets?
- Confidence does not follow the monotonicity property
 - i.e., confidence $(X \rightarrow Y)$ can be >,<,= to confidence $(X' \rightarrow Y')$, $X' \subseteq X$, $Y' \subseteq Y$
 - e.g., confidence(ABC \rightarrow D) can be larger or smaller than confidence(AB \rightarrow D)
- But the confidence of rules generated from the same itemset does

If rule $X \rightarrow Y-X$ does not satisfy the minConfidence threshold, then any rule $X' \rightarrow Y-X'$, where $X' \subseteq X$, must not satisfy the minConfidence threshold as well.

- For example, for X={ABCD}, then
 - confidence(ABC \rightarrow D) \geq confidence(AB \rightarrow CD) \geq confidence(A \rightarrow BCD)

Confidence-based pruning

Example

tid	Χ _T	
1	{Bier, Chips, Wine}	
2	{Bier, Chips}	
3	{Pizza, Wine}	
4	{Chips, Pizza}	

Transaction database

Itemset	Cover	Sup.	Freq.
{}	{1,2,3,4}	4	100 %
{Bier}	{1,2}	2	50 %
{Chips}	{1,2,4}	3	75 %
{Pizza}	{3,4}	2	50 %
{Wine}	{1,3}	2	50 %
{Bier, Chips}	{1,2}	2	50 %
{Bier, Wine}	{1}	1	25 %
{Chips, Pizza}	{4}	1	25 %
{Chips, Wine}	{1}	1	25 %
{Pizza, Wine}	{3}	1	25 %
{Bier, Chips, Wine}	{1}	1	25 %

I = {Bier, Chips, Pizza, Wine}

Rule	Sup.	Freq.	Conf.
${Bier} \Rightarrow {Chips}$	2	50 %	100 %
$\{Bier\} \Rightarrow \{Wine\}$	1	25 %	50 %
$\{Chips\} \Rightarrow \{Bier\}$	2	50 %	66 %
$\{Pizza\} \Rightarrow \{Chips\}$	1	25 %	50 %
{Pizza} ⇒ {Wine}	1	25 %	50 %
{Wine} ⇒ {Bier}	1	25 %	50 %
{Wine} ⇒ {Chips}	1	25 %	50 %
{Wine} ⇒ {Pizza}	1	25 %	50 %
$\{ ext{Bier, Chips} \} \Rightarrow \{ ext{Wine} \}$	1	25 %	50 %
$\{Bier, Wine\} \Rightarrow \{Chips\}$	1	25 %	100 %
$\{Chips, Wine\} \Rightarrow \{Bier\}$	1	25 %	100 %
{Bier} ⇒ {Chips, Wine}	1	25 %	50 %
{Wine} ⇒ {Bier, Chips}	1	25 %	50 %

Evaluating Association Rules 1/2

Interesting and misleading association rules

Example:

- Database on the behavior of students in a school with 5.000 students
- Itemsets:
 - 60% of the students play Soccer,
 - 75% of the students eat chocolate bars
 - 40% of the students play Soccer and eat chocolate bars
- Association rules: {"Play Soccer"} \rightarrow {"Eat chocolate bars"}, confidence = 40%/60%= 67%
 - The rule has a high confidence, however:
 - {"Eat chocolate bars"}, support= 75%, regardless of whether they play soccer.
 - Thus, knowing that one is playing soccer decreases his/her probability of eating chocolate (from 75% \rightarrow 67%)
 - Therefore, the rule {"Play Soccer"} \rightarrow {"Eat chocolate bars"} is misleading despite its high confidence

Evaluating Association Rules 2/2

Task: Filter out misleading rules

Let
$$\{A\} \rightarrow \{B\}$$

Measure of "interestingness"-score of a rule:

$$interest = \frac{support(A \cup B)}{support(A)} - support(B)$$

- the higher the value the more interesting the rule is
- Measure of dependent/correlated events:

$$lift = \frac{support(A \cup B)}{support(A)support(B)}$$

- the ratio of the observed support to that expected if X and Y were independent.
- Lift > 1 means that the rule is interesting, lift < 1 means that the presence of one item has negative effect on presence of other item and vice versa.

Measuring Quality of Association Rules

For a rule $A \rightarrow B$

- Support $support(A \cup B)$ $P(E_A \cap E_B)$ $E_X :=$ Event that itemset X appears in a transaction
 - e.g. support(milk, bread, butter)=20%, i.e. 20% of the transactions contain these
- Confidence $\frac{support(A \cup B)}{support(A)}$ $\frac{P(E_A \cap E_B)}{P(E_A)}$
 - e.g. confidence(milk, bread → butter)=50%, i.e. 50% of the times a customer buys milk and bread, butter is bought as well.
- Lift $\frac{support(A \cup B)}{support(A)support(B)} \frac{P(EA \cap E_B)}{P(E_A)P(EB)}$
 - e.g. lift(milk, bread→ butter)=20%/(40%*40%)=1.25. the observed support is 20%, the expected (if they were independent) is 16%.